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Abstract 11 

Climate change is expected to increase the frequency and severity of droughts. These events, which 12 

can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on 13 

ecosystem structure and functioning after the drought has subsided are often called ‘drought legacies’. 14 

While the immediate effects of drought on ecosystems have been comparatively well characterized, 15 

our broader understanding of drought legacies is just emerging. Drought legacies can relate to all 16 

aspects of ecosystem structure and functioning, involving changes at the species and the community 17 

scale as well as alterations of soil properties. This has consequences for ecosystem responses to 18 

subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying 19 

mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using 20 

examples of carbon cycling and community composition. We present hypotheses characterizing how 21 

intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, 22 

and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. 23 

We propose ways for improving our understanding of drought legacies and their implications for 24 

subsequent drought events, needed to assess the longer-term consequences of droughts on 25 

ecosystem structure and functioning. 26 
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1. Introduction 30 

Climate change has been and will likely be causing a significant increase in the severity and frequency 31 

of drought events (Trenberth et al. 2014; Spinoni et al. 2018; IPCC 2021) with strong repercussions on 32 

ecosystem processes and services (Ciais et al. 2005; Reichstein et al. 2013; Thonicke et al. 2020; 33 

Vicente-Serrano et al. 2020; Bastos et al. 2020; Feeley et al. 2020). In addition to the concurrent effects 34 

of drought events on ecosystems, manifold changes can persist after the drought has subsided (Frank 35 

et al. 2015). These post-drought effects are commonly referred to as “drought legacies” (Vilonen et al. 36 

2022) and have been demonstrated for various aspects of ecosystem structure and functioning. 37 

Drought legacy effects have been associated with altered carbon (C) cycling (Scott et al. 2010; Craine 38 

et al. 2013; Xie et al. 2020; Kannenberg et al. 2020; Wei et al. 2022; Liu et al. 2022), nitrogen (N) cycling 39 

(DeVries et al. 2012; Legay et al. 2018; DeLong et al. 2019), growth (Anderegg et al. 2015b; Wu et al. 40 

2018; Zhao et al. 2020; Gazol et al. 2020), phenology (Kang et al. 2018; Sippel et al. 2018; Peng et al. 41 

2019; Berwaers et al. 2019; Zeng et al. 2021; Hoover et al. 2021), species composition (Stampfli et al. 42 

2018; DeBoeck et al. 2018; Griffin‐Nolan et al. 2019; Winkler et al. 2019; Stampfli & Zeiter 2020), 43 

herbivory (Gutbrodt et al. 2011) as well as soil physicochemical properties (Goebel et al. 2011; 44 

Sánchez-García et al. 2019). Drought legacies have also been associated with increased plant mortality 45 

(Bigler et al. 2007; Trugman et al. 2018; Hartmann et al. 2018; Sippel et al. 2018; Zhou et al. 2019; 46 

Hammond 2020), and with reduced plant defence against pests and pathogens (Jactel et al. 2012; 47 

Wiley et al. 2016; Trugman et al. 2021). 48 

All these biotic and abiotic legacies from species to ecosystem scale are summarized below and 49 

referred to as legacies in intrinsic factors. In addition to these intrinsic factors a range of extrinsic 50 

factors, including drought timing, drought severity (intensity and duration), and drought frequency can 51 

affect drought legacies. 52 

Although the relevance of drought legacies for a longer-term perspective on ecosystem resilience (the 53 

resistance to and recovery from subsequent drought events (Lloret et al. 2011; Ingrisch & Bahn 2018) 54 

has been increasingly acknowledged in  recent years (Anderegg et al. 2020; DeSoto et al. 2020; Canarini 55 
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et al. 2021; Hahn et al. 2021), our understanding of drought legacies and the underlying processes is 56 

still restricted to a few case studies or specific aspects of plant and ecosystem functioning, such as 57 

radial tree growth (see Fig. S1) (Kannenberg et al. 2019b; Kannenberg et al. 2020; Gazol et al. 2020). 58 

Hence, we still lack a clear understanding of how drought legacies alter the resilience of ecosystems to 59 

subsequent drought events. This is of particular relevance given that drought frequency is likely to 60 

increase in the coming decades (Wang et al. 2021b; IPCC 2021). 61 

This review aims to i) synthesize our current understanding of drought legacies and the underlying 62 

mechanisms from species and communities to ecosystem (biotic and abiotic) scale and ii) summarize 63 

the legacy duration of previously documented drought legacy responses. Furthermore, we iii) develop 64 

hypotheses as to how drought legacies could influence the resilience trajectories of ecosystem 65 

responses to subsequent drought events.  66 

 67 

2. Defining and characterizing drought legacies  68 

Drought legacies are commonly defined as any alterations of an ecosystem state or processes that 69 

occur after a drought has subsided (Sala et al. 2012; Rousk et al. 2013; Walter et al. 2013; DeBoeck et 70 

al. 2018; Griffin‐Nolan et al. 2018; Buttlar et al. 2018; Delgado-Balbuena et al. 2019; Vilonen et al. 71 

2022). They refer to changes of intrinsic factors after a disturbance event (see material legacies 72 

(Johnstone et al. 2016)) compared to evolutionary adaptions to historical disturbance regimes (see 73 

information legacies (Johnstone et al. 2016)). Drought legacies can involve both reductions and 74 

enhancements in response parameters (Sala et al. 2012; Frank et al. 2015; Griffin‐Nolan et al. 2018).  75 

Next to the term ‘drought legacy’ several other terms have been used in the literature, including 76 

‘lagged effects’ (Zhao et al. 2018), ‘stress imprint’ (Bruce et al. 2007), ‘stress memory’ (Walter et al. 77 

2013; Fleta-Soriano & Munné-Bosch 2016) or ‘drought memory’ (Walter et al. 2011; Ogle et al. 2015; 78 

Canarini et al. 2021) (for a broader discussion see also (Vilonen et al. 2022)). 79 

In this paper we use the term drought legacy to describe any shift in ecosystem properties or processes 80 

after a drought has subsided (Fig. 1). Thus, drought legacies include both the recovery phase after the 81 
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drought has ended and the post-recovery phase, in the case of incomplete recovery (Fig.1). The 82 

recovery phase is characterized by the rate of recovery (arrow 2) following the maximum impact of the 83 

drought event (arrow 1). The post-recovery phase starts when the rate of recovery levels off  (arrow 84 

3), and the recovery is complete (yellow trajectory, no legacy) or incomplete, i.e. the baseline has been 85 

shifted (red and blue trajectories, legacy). These shifts can occur on all organizational scales, including 86 

species-, community- and / or ecosystem (Fig. 2). 87 

Given that the ecosystem state changes dynamically during the recovery phase, the most coherent 88 

approach to quantifying and comparing drought legacies would be to compare the ecosystem post-89 

recovery state with the baseline state (see below) (Fig. 1). However, this may be difficult to achieve in 90 

cases when recovery rates are difficult to quantify, e.g. due to insufficient time resolution for assessing 91 

recovery dynamics or to intrinsic factors which recover very slowly, e.g. community properties which 92 

can take years or decades to recover fully (Albertson & Weaver 1944; Stampfli & Zeiter 2004). 93 

To date, different baselines of an ecosystem state, such as pre-disturbance level (Gazol et al. 2020), 94 

control (Yahdjian & Sala 2006; Arredondo et al. 2016; DeBoeck et al. 2018; Mackie et al. 2019), or 95 

predicted level (Anderegg et al. 2015b; Peltier et al. 2016; Wu et al. 2018; Delgado-Balbuena et al. 96 

2019) have been used to characterize drought legacies. We suggest a characterization of drought 97 

legacies post-drought or, if possible, post-recovery via the legacy duration (arrow 5) and the legacy 98 

size (deviation from the pre-drought, control, or the predicted baseline (arrow 4)). While we 99 

acknowledge that pre- and post-drought baselines can fluctuate strongly over time (Bahn & Ingrisch 100 

2018), we suggest that such a characterization can enhance comparability of drought legacies across 101 

ecosystems and response parameters in future studies, especially when combined with a consistent 102 

design of drought studies (Slette et al. 2019; Munson et al. 2020).  103 

Given that drought legacies may have strong repercussions on ecosystem responses to subsequent 104 

droughts, we argue that a drought legacy should consider the whole timespan during which the 105 

ecosystem state and its responses to environmental conditions, including a subsequent drought, are 106 

altered by a drought event (see also section 5). 107 
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 108 

3. Drought legacies and the underlying mechanisms at species-, community- and ecosystem 109 

scale 110 

Drought can have long lasting effects on intrinsic factors from species-, community-, to ecosystem scale 111 

(see Fig. 2 and below). The legacy size and duration of these intrinsic factors can be affected by a range 112 

of extrinsic factors, including drought timing, drought severity (intensity and duration), and drought 113 

frequency. For example, drought timing can alter growth legacies in forests, such that the legacy size 114 

is higher in the later (Kannenberg et al. 2019a) or drier part of the growing season (Huang et al. 2018). 115 

In grasslands, the effects of drought timing on the size of growth legacies increase the later the drought 116 

occurs in the season (Hahn et al. 2021). Also drought intensity impacts the legacy size, which increases 117 

with increasing drought intensity (Yahdjian & Sala 2006; Kannenberg et al. 2019a). Furthermore, a 118 

longer drought duration was observed to also enhance legacy duration (Jiao et al. 2021). Moreover, 119 

there is increasing evidence that ecosystem responses to drought intensity and duration are nonlinear 120 

during drought (Dannenberg et al. 2019; Zhang et al. 2021; Wang et al. 2021a; Felton et al. 2021), with 121 

potential consequences for drought legacies, though these remain to be explored. 122 

In the following, we provide an overview of post-drought legacies and the underlying mechanisms from 123 

species- to community- and ecosystem scale (broadly summarized in Fig. 2). 124 

 125 

Species scale 126 

Drought can lead to a range of structural changes on the species scale. For example, in grasslands 127 

drought can decrease the tiller and stolon density, with consequences for ecosystem productivity 128 

(Reichmann et al. 2013; Reichmann & Sala 2014; Delgado-Balbuena et al. 2019). Moreover, drought 129 

can reduce belowground bud density (Qian et al. 2022) as well as reproductive output with 130 

consequences for grassland community composition (Zeiter et al. 2016). Furthermore, drought can 131 

increase the number of seeds and decrease the number of leaves (Metz et al. 2020). Moreover, 132 

drought can induce a shift towards resource-conservative root traits such as lower specific root length 133 
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(DeVries et al. 2016) and can increase community-weighted plant traits such as specific leaf area and 134 

leaf N content, which reflects a shift towards communities with drought avoidance and escape 135 

strategies (Griffin‐Nolan et al. 2019). After recovery from drought, increased shoot, root, and tissue N 136 

concentrations of herbaceous species have often been observed, which is probably due to higher post-137 

drought N availability (see also ecosystem section below) (Roy et al. 2016; Ingrisch et al. 2018; DeLong 138 

et al. 2019). In forests, drought can lead to structural changes such as a decrease in active xylem area, 139 

as well as needle shedding or canopy loss (Peltier & Ogle 2019). 140 

On a physiological level, drought can alter the growth rate of species across plant functional types, 141 

and as a result, legacy effects can be positive or negative (DeVries et al. 2012; Darenova et al. 2017; 142 

Itter et al. 2019; Peltier & Ogle 2019; Kannenberg et al. 2019b; Kannenberg et al. 2020; Li et al. 2020; 143 

Zhao et al. 2020). Drought legacies of tree ring studies predominantly suggest negative effects on 144 

growth (Anderegg et al. 2015b; Kannenberg et al. 2020). In trees, post-drought reductions of root 145 

functioning (Peltier & Ogle 2019) and an altered stomatal sensitivity to soil and plant water status 146 

(Grossiord et al. 2018) have been observed. Furthermore, drought can alter molecular mechanisms 147 

such as pathways of signalling metabolites, transcription factors, or epigenetics involving modifications 148 

in DNA, histone, or chromatin organization (Bruce et al. 2007; Ding et al. 2012; Sahu et al. 2013; 149 

Kinoshita & Seki 2014; Crisp et al. 2016; Alves et al. 2020), with consequent  structural changes, 150 

including short-term changes such as the pigment composition of leaves (Fleta-Soriano & Munné-151 

Bosch 2016). 152 

Drought legacies have also been associated with altered phenology both of herbaceous and woody 153 

species, e.g. earlier end-of-season senescence leading to a shortened growing season (Kang et al. 2018; 154 

Peng et al. 2019; Berwaers et al. 2019; Hoover et al. 2021). These effects are especially pronounced in 155 

regions with generally low water availability (Peng et al. 2019). Prior-season drought (Zeng et al. 2021) 156 

and spring drought (Kang et al. 2018) can lead to a delay in the onset of spring growth and hence the 157 

start of the growing season, with negative impacts on summer growth rates (Zeng et al. 2021). Finally, 158 

drought can advance the flowering date and increase the flowering duration. The phenological 159 
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response can vary depending on the species and the diversity of a stand with potential long-term 160 

effects on reproductive fitness (Jentsch et al. 2009). 161 

Plant mortality is a widespread drought legacy with significant consequences for the community and 162 

the ecosystem scale. Mortality can occur both during (Choat et al. 2018; Jung et al. 2020) and after a 163 

severe drought event (Bigler et al. 2007; Anderegg et al. 2013; Frank et al. 2015; Anderegg et al. 2015a; 164 

Schlesinger et al. 2016; Trugman et al. 2018; Stampfli et al. 2018; Sippel et al. 2018; Harrison et al. 165 

2018; Brodribb et al. 2020; Trugman et al. 2020; Senf et al. 2020). Tree mortality has frequently been 166 

associated with hydraulic failure, but also C limitation has been discussed as a possible cause in some 167 

cases (Gessler et al. 2017; Adams et al. 2017; Choat et al. 2018; McDowell et al. 2020; McDowell et al. 168 

2022). Additionally, lags in soil water replenishment following drought (van der Molen et al. 2011) can 169 

enhance species mortality (Goulden & Bales 2019). Furthermore, drought often leads to reduced plant 170 

defence against herbivory, pests, and pathogens, which increases the risk of plant mortality in trees 171 

and herbaceous species (Gutbrodt et al. 2011; Jactel et al. 2012; Gaylord et al. 2013; Anderegg et al. 172 

2015a; Kolb et al. 2016; Wiley et al. 2016; Schlesinger et al. 2016; Trugman et al. 2021). 173 

 174 

Community scale 175 

Drought can exert legacy effects on plant communities by reducing species richness (Stampfli et al. 176 

2018), abundance of specific species (Jung et al. 2014; Hoover et al. 2014), and diversity (Xu et al. 177 

2017), but drought has also been shown to increase functional diversity (Griffin‐Nolan et al. 2019). In 178 

grassland exposed to drought, plant composition shifted towards more stress-resistant slower growing 179 

species (Wilcox et al. 2021). Results of single case studies performed in prairie (Hoover et al. 2014) or 180 

with alpine grassland mesocosms (DeBoeck et al. 2018) suggest that grasses are probably more 181 

drought resistant than forbs. In addition to different resistance to drought, community reorganization 182 

towards grass domination can also be driven by altered plant-plant interactions, such as competition, 183 

with resource-acquisitive grasses dominating at the expense of resource-conservative forbs (Stampfli 184 

et al. 2018). In contrast, droughts may favour an increase of forbs, which have been suggested to 185 
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outperform grasses in their capacity to recruit from seed (Stampfli & Zeiter 2004). In grasslands where 186 

shrubs are present, they can replace perennial grasses as a response to drought due to their more 187 

extensive root systems permitting access to deeper water (Winkler et al. 2019).  188 

In forests, community reorganization following drought can lead to shifts in dominant tree species and 189 

their associated above- and belowground communities, involving a.o. shifts towards more drought 190 

tolerant and xeric communities and related traits, and in savannas shifts towards non-woody 191 

vegetation (Suarez & Kitzberger 2008; Anderegg et al. 2013; Clark et al. 2016; Trugman et al. 2020; 192 

Batllori et al. 2020; Brodribb et al. 2020). Community shifts can also be species-unspecific, as e.g. 193 

mortality is often related to tree density and tree size, irrespective of the species involved (McDowell 194 

et al. 2020; Brodribb et al. 2020; Trugman et al. 2020; Cui et al. 2022). 195 

Drought and rewetting have strong impacts on soil communities. Drought can alter species 196 

composition and generally tends to decrease the abundance and the richness of soil fauna (Lindberg 197 

et al. 2002; Lindberg & Bengtsson 2006; DeVries et al. 2012; Coyle et al. 2017). It has recently been 198 

shown to also cause legacies in the microbial community composition (Kaisermann et al. 2017; 199 

Meisner et al. 2018; Meisner et al. 2021; Canarini et al. 2021; Liu et al. 2022; Evans et al. 2022; Xi et al. 200 

2022). Drought was observed to promote fungi and to reduce bacteria (Fuchslueger et al. 2014; Preece 201 

et al. 2019) and bacterial networks (DeVries et al. 2018). Drought can also alter microbial community-202 

level traits, but the magnitude and persistence of such drought legacies is under debate (Wang & 203 

Allison 2021). Drought effects on plant-soil feedbacks, which can strongly alter above- and 204 

belowground communities, will be discussed in the ecosystem section. 205 

Drought-induced changes on the community scale can also be driven by invasive species. Generally, 206 

when invasive species are already established, they tend to negatively affect plant communities 207 

through a loss in plant diversity, shifted community composition, and a dampened recovery capacity 208 

of natives from drought (Fahey et al. 2018; Vetter et al. 2020; Xu et al. 2022). In invaded grassland 209 

plant communities, drought was observed to impact growth of invasive species less (Meisner et al. 210 

2013) or more (Valliere et al. 2019) compared to native species. When negatively affecting plant 211 
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growth of invasives, drought can lead to a long lasting reduction in the presence of invasive plants post 212 

drought (Kelso et al. 2020). The effects of growth and reproduction can be weakened by higher 213 

germination rates of seeds of invasive compared to natives species (Valliere et al. 2019). 214 

 215 

Ecosystem scale 216 

Drought can lead to a range of legacies on the ecosystem scale, which can be driven by changes on 217 

species or community scale and can feed back to these scales. 218 

Drought can induce pronounced legacy effects on ecosystem carbon (C) cycling, e.g. through legacy 219 

effects on plant biomass (Yang et al. 2018; Wigneron et al. 2020) and biomass production. Drought 220 

legacy effects on aboveground net primary production (ANPP) can be positive (Griffin‐Nolan et al. 221 

2018) or negative (Sala et al. 2012; Petrie et al. 2018). Enhanced post-drought growth can compensate 222 

for the growth reductions during drought and stabilize overall biomass production (Stampfli et al. 223 

2018; Mackie et al. 2019; Hahn et al. 2021). In grasslands, drought legacy effects on ANPP have been 224 

associated with tiller recruitment (Reichmann et al. 2013; Reichmann & Sala 2014), changes in the 225 

composition of species and functional groups (Hoover et al. 2014; DeBoeck et al. 2018; Gao et al. 2021), 226 

as well as changes in nutrient availability (DeLong et al. 2019; Mackie et al. 2019). Drought can also 227 

lead to increased (Berwaers et al. 2019) or decreased carbon uptake and respiration (Delgado-228 

Balbuena et al. 2019), and affect soil respiration (Dong et al. 2021; Liu et al. 2022). Post-drought 229 

changes in microbial biomass or in microbial community-level traits can alter soil C cycling such as soil 230 

respiration (Dong et al. 2021; Evans et al. 2022; Liu et al. 2022) and soil organic matter decomposition 231 

(Wang & Allison 2021). Furthermore, drought can have a positive or negative legacy effect on water 232 

use efficiency (WUE), that is the amount of C taken up relative to the amount of water lost (Yang et al. 233 

2016; Huang et al. 2017; Ji et al. 2021). Generally, post-drought changes in WUE last longer for forests 234 

(up to one year) than for shrubland and sparse vegetation (up to four months) (Ji et al. 2021). In the 235 

longer term, changes in plant species composition after a drought event towards drought-tolerant 236 

species has been suggested to increase C and water cycling (Craine et al. 2013). 237 
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Drought and rewetting can alter N cycling and the short-term dynamics of soil N availability. Upon 238 

rewetting, large pulses in nutrient release and N mineralization can occur (Birch 1958; Manzoni et al. 239 

2012; Leitner et al. 2017; Schimel 2018; van Sundert et al. 2020). This higher availability of N post-240 

drought was observed to enhance recovery of plant growth in grasslands (Schrama & Bardgett 2016; 241 

Roy et al. 2016; Ingrisch et al. 2018; Karlowsky et al. 2018), thereby reducing potential subsequent 242 

plant growth legacies. Indeed, an increase in soil N following drought was found to be accompanied in 243 

grasslands by higher plant growth and in consequence biomass (DeVries et al. 2012; Legay et al. 2018; 244 

Mackie et al. 2019; DeLong et al. 2019). In forests, the higher nutrient supply post drought can enhance 245 

tree recovery, which strongly depends on the re-establishment of root functions as well as root 246 

damage and mortality (Gessler et al. 2017). Furthermore, drought-induced effects on roots as well as 247 

leaf senescence can affect nutrient status and nutrient demand post-drought (Schlesinger et al. 2016). 248 

For example, N uptake under drought can be reduced (Joseph et al. 2021) and detrimental impacts of 249 

drought on K availability can reduce tree resistance to subsequent drought (Touche et al. 2022). 250 

Post-drought N availability can also be altered by changes in microbial communities (Meisner et al. 251 

2018). For example, drought can select for microbial communities with a lower capacity to immobilize 252 

N which leads, together with lower root N uptake, to higher soil N concentration (DeVries et al. 2016). 253 

Also drought-related changes in fungi / bacteria ratios can result in altered ecosystem N and C cycling 254 

(DeVries et al. 2018) and induce possible feedback to plants and alter plant-plant interactions 255 

(Kaisermann et al. 2017). Furthermore, drought legacy effects on N cycling in grasslands can be induced 256 

by a decrease in soil microbial activity post-drought, as microbial enzymatic activities are highly 257 

sensitive to drought (Acosta-Martinez et al. 2014; Legay et al. 2018). 258 

A major driver of drought legacies in grasslands is related to drought-induced changes in plant-soil 259 

feedbacks (PSFs), that is the interactions between plants, soil organisms, and abiotic soil factors, which 260 

lead to altered plant composition and performance and have cascading effects on ecosystem 261 

properties (van der Putten et al. 2013; Preece & Peñuelas 2016; van der Putten et al. 2016; Peguero et 262 

al. 2019; DeVries et al. 2019; Pugnaire et al. 2019; Williams & DeVries 2020; Crawford & Hawkes 2020; 263 
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Buchenau et al. 2022). Drought can influence PSFs e.g. via drought-driven changes in the composition 264 

of plant species, whose roots interact with the respective symbionts, decomposers, and pathogens 265 

(van der Putten et al. 2016; Pugnaire et al. 2019). Similarly, drought can influence PSFs via changes in 266 

belowground community composition (van der Putten et al. 2016; Pugnaire et al. 2019). Thereby, 267 

drought-induced changes in microbial communities can alter the direction and intensity of PSFs with 268 

consequences for ecosystem properties, e.g. by positively or negatively affecting plant growth 269 

(Kaisermann et al. 2017). Drought effects on PSFs can be mediated both in terms of quantity and 270 

quality by altered plant inputs in soil, such as litter and rhizodeposition (Kuzyakov 2002; Sánchez-271 

Cañizares et al. 2017; Karlowsky et al. 2018; Sasse et al. 2018; DeVries et al. 2019; Williams & DeVries 272 

2020). Drought-induced changes of rhizodeposition strongly depend on species identity and drought 273 

intensity (Preece & Peñuelas 2016) and can alter nutrient availability through shifts in fungi / bacteria 274 

ratios, causing shifts in plant composition (Preece & Peñuelas 2016; Peguero et al. 2019). Drought also 275 

reduces litter quality and thereby leads to lower mineralization rates. The resulting deceleration of 276 

nutrient cycling and the enhancement of  fungal dominance in the microbial community  in turn can 277 

alter plant community composition and favour more drought adapted species (Pugnaire et al. 2019). 278 

Finally, drought legacies not only affect PSFs between species but also within species, by favoring 279 

genotypes within plant species that develop less negative feedback and thereby decreasing 280 

intraspecific diversity (Crawford & Hawkes 2020). 281 

Drought legacies have been shown to lead to reduced leaf area index in grasslands and forest 282 

(Kannenberg et al. 2019b; Jiao et al. 2021) and to affect the canopy structure (Beloiu et al. 2022), 283 

driven by changes in species abundance and composition, e.g. in forests subjected to wide-spread 284 

mortality (Saatchi et al. 2013; Senf et al. 2021). Changes in canopy structure can alter abiotic 285 

ecosystem properties such as light availability and microclimate, with consequences for the 286 

composition and biodiversity of the understory as well as nutrient and C cycling (Kane et al. 2011; 287 

Royer et al. 2011; Anderegg et al. 2012; Anderegg et al. 2013).  Drought can have a positive or negative 288 

legacy effect on soil moisture in grasslands, lasting up to a half year post-drought (Robinson et al. 2016; 289 
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Reinthaler et al. 2021; Hoover et al. 2021). Positive soil moisture legacies can be driven by a post-290 

drought decrease of species with low drought resistance, which can reduce community-level water 291 

demand (Hoover et al. 2021). Drought can also cause legacy effects on soil properties, by altering the 292 

chemical and physical soil structure. Drought has been shown to increase the soil water repellency 293 

(Goebel et al. 2011; Sánchez-García et al. 2019), decrease soil moisture retention and soil moisture 294 

storage capacity (Robinson et al. 2016). It can also change aggregate stability (Goebel et al. 2005) with 295 

cascading effects on ecosystem functioning. For example, an increase in soil water repellency caused 296 

by drought can reduce the mineralization of soil organic matter by microbes with potential 297 

consequences for plant productivity and plant community structure (Goebel et al. 2011). 298 

 299 

4. Drought legacy durations 300 

To date few studies have explicitly looked into drought legacy duration, which has been best 301 

documented for C cycle processes. Here, we synthesize drought legacy duration post-drought for a 302 

range of C cycle parameters and for community properties, which both strongly depend on the plant 303 

functional types and the specific response parameter studied (Fig. 3). 304 

In grasslands, most C-cycle related legacies return to pre-disturbance level roughly within the first year 305 

after the drought and can last several years for forests (Fig. 3a). This is in line with the suggestion by 306 

Wu et al. (2018), and Zhang et al. (2022)  that drought legacies tend to be longer for forest and woody 307 

species compared to grasslands and non-woody/herbaceous species. 308 

Overall, flux parameters return to pre-disturbance levels within the first year (Fig. 3a, see also 309 

(Schwalm et al. 2017; Zhao et al. 2020)), while biomass- and growth-related legacies tend to persist 310 

long afterwards (Fig. 3a). This supports the emerging notion of a post-drought decoupling of temporal 311 

dimensions of response parameters in forests such as C uptake, tree rings, and NDVI (Kannenberg et 312 

al. 2019b; Gessler et al. 2020; Gazol et al. 2020; Kannenberg et al. 2020), showing that the legacy 313 

duration of different C cycle response parameters is highly variable. 314 
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Furthermore, we observed that legacies in community properties, such as species abundance, 315 

composition, and richness tend to last longer in woody species and understory compared to grasslands 316 

(see Fig. 3b). Moreover, the drought legacy effects on community properties tend to last longer than 317 

those related to C cycle parameters (Fig. 3). For example, while biomass recovered after drought in a 318 

grassland experiment (Fig 3a), species composition still remained affected after one (Hoover et al. 319 

2014) and two years (DeBoeck et al. 2018; Xu et al. 2021) (Fig. 3b). Following severe drought events, 320 

community properties often do not return to pre-disturbance levels  (Fig. 3) (Hillebrand & Kunze 2020). 321 

Overall, the temporal aspect of drought legacies and their dependencies are still poorly understood 322 

across response parameters and plant functional types. This is especially relevant for long-term 323 

legacies that are related to community properties (Hillebrand & Kunze 2020) (see Fig. 3b). By 324 

conducting continuous measurements long after the drought has subsided and thereby revealing when 325 

deviations of response parameters return to the baseline, studies could provide insight into the 326 

duration and cumulative magnitude of drought legacies. Based on the scarce available evidence we 327 

suggest that to fully quantify drought legacies, observations of up to five and fifteen years may be 328 

required for grasslands and forests, respectively. 329 

 330 

5. Effects of drought legacies on responses to subsequent drought events 331 

While legacies after a drought event have been increasingly studied in recent years, we still lack a 332 

profound understanding of how these drought legacies alter the resilience (i.e. resistance and recovery 333 

(sensu Ingrisch & Bahn 2018) of ecosystems to subsequent droughts (or other extreme events, see e.g. 334 

Zscheischler et al. 2018). Drought legacy effects on ecosystem responses of a subsequent drought can 335 

relate to all ecosystem properties and processes (intrinsic factors, IFs) outlined above. In the following, 336 

we develop hypotheses about the main determinants of the resilience trajectories of an IF to 337 

subsequent drought events. 338 

First, we hypothesise that the resilience of an IF to a subsequent drought depends on its post-recovery 339 

state following the antecedent drought event. Relations can be manifold and depend on the particular 340 
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IF, hence for simplicity we only present one option here, showing the highest resilience when the IF 341 

reveals no legacy from the previous drought (Fig. 4). 342 

Second, we suggest that the resilience of an IF to a subsequent drought depends on the adaptation 343 

and degradation of all further IFs of the ecosystem (Fig. 2, Fig. 4). We hypothesize that post-drought 344 

legacy adaptation/ degradation of all further IFs of an ecosystem can shift the response of an IF to a 345 

subsequent drought towards higher/ lower resilience, respectively (Fig. 4, 5). Importantly, different IFs 346 

can be affected by adaptations and degradations to different degrees (Fig. 5). 347 

On the species scale, adaptations imply that species become more adjusted to drought, which can 348 

moderate the impact of a subsequent drought event. For example, a reduced xylem conduit size in 349 

trees can reduce the risk of hydraulic failure and thereby increase resistance to a subsequent drought 350 

(Gessler et al. 2020). Proline, a water retaining compound that can regulate osmotic adjustments, was 351 

found to be adaptively enriched in grassland species under recurrent drought conditions (Li et al. 352 

2022). The observed higher water retention and concurrent higher stomatal conductance can maintain 353 

plant functioning during subsequent droughts (Li et al. 2022). Furthermore, an adaptation towards 354 

higher photosynthetic rate was observed under recurrent drought and during its recovery (Alves et al. 355 

2020). Moreover, a higher root biomass as a legacy from a previous drought can increase resistance 356 

and recovery to a new drought (Legay et al. 2018). It is known that molecular mechanisms such as 357 

accumulation of proteins and transcription factors, as well as epigenetic changes can change plant 358 

responses to subsequent stress (Bruce et al. 2007; Jacques et al. 2021). For example, drought was 359 

suggested to result in epigenetic changes leading to structural changes (Fleta-Soriano & Munné-Bosch 360 

2016) or enhanced transcription of stress-response genes (Ding et al. 2012), thereby increasing plant 361 

resistance to a subsequent drought. These mechanisms of ‘drought memory’ (Walter et al. 2013) were 362 

hypothesized to be an underlying cause for increased resistance of plant biomass during subsequent 363 

drought (Walter et al. 2011; Backhaus et al. 2014). 364 

Long-term adaptations on the community scale have been documented for all plant functional types. 365 

Such adaptations frequently involve increased dominance of drought adapted species (Hoover et al. 366 
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2014; DeBoeck et al. 2018; Xu et al. 2021; Wilcox et al. 2021) and lead to corresponding shifts in the 367 

community-level plant traits (Trugman et al. 2020; Evans et al. 2022). They have also been shown to 368 

involve increases in  functional diversity (Griffin‐Nolan et al. 2019). Such community-level adaptations 369 

can moderate the impact of a subsequent drought (Coleman & Wernberg 2020) (see Fig. 5). For 370 

example, an increase of trees with drought-tolerant hydraulic traits can buffer forest productivity 371 

during subsequent droughts (Trugman et al. 2020). Moreover, an adaptation of soil biota and 372 

processes can dampen the negative effect of a subsequent drought on native plant species while 373 

reducing the success of invasive species (Meisner et al. 2013). It has recently also been shown that 374 

multiple recurrent droughts can alter soil microbial community composition and enhance soil 375 

multifunctionality during subsequent drought events (Canarini et al. 2021). 376 

On the ecosystem scale, increased N availability upon rewetting can favour resistance to and recovery 377 

from subsequent drought (Legay et al. 2018). Recurrent drought events have been shown to enhance 378 

such rewetting-induced N release both in the lab (Miller et al. 2005; Lu et al. 2019) and in the field 379 

(DeVries et al. 2012). However, several studies also suggest that under recurrent droughts this 380 

rewetting effect can be dampened (Borken & Matzner 2009; Yu et al. 2014; Kaisermann et al. 2017; 381 

Sánchez-García et al. 2019), which might lead to an overall reduction of N availability in the ecosystem, 382 

as rewetting can fail to balance the decreased N mineralization rates during drought events (Borken & 383 

Matzner 2009) or lead to enhanced N leaching (Sardans et al. 2020; Krüger et al. 2021). 384 

In addition to drought-induced adaptations, degradations of intrinsic factors can have an important 385 

influence on ecosystem responses to subsequent droughts. In fact, it has been suggested that an 386 

increasing amount of land area globally may be degraded by aridity in the long-term due to shifts in 387 

precipitation regimes (Berdugo et al. 2020). Increased aridity can hamper the recovery after a drought 388 

event and lead to more extreme responses to recurrent drought events. Degradation can involve both 389 

plant- and soil-related parameters such as plant cover and soil aggregate stability (Berdugo et al. 2020). 390 

Furthermore, legacies in fungi/ bacteria ratio can decrease the ability of soil microbial communities to 391 

maintain the same functions under recurrent drought (Preece et al. 2019). Degradation can also imply 392 
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reduced biodiversity (Jung et al. 2014; Hoover et al. 2014; Xu et al. 2017; Stampfli et al. 2018), which 393 

is an important stabilizing factor for ecosystem productivity and both increases the resistance to (Isbell 394 

et al. 2015) and recovery from drought (van Ruijven & Berendse 2010; Kreyling et al. 2017; Craven et 395 

al. 2018). Moreover, negative effects on seedbanks can affect plant communities and could reveal 396 

themselves after a long time, as they are often not reflected in the aboveground vegetation (Basto et 397 

al. 2018). 398 

Finally, we hypothesize that the resilience trajectories of an IF to a subsequent drought event are 399 

strongly influenced by extrinsic factors, including drought timing, frequency, and severity (Fig. 4). Next 400 

to seasonality effects, timing matters for the degree of the recovery from the previous drought (Fig. 401 

4). Overall we expect that resilience is lower when the species, community, or ecosystem property or 402 

process has not yet recovered from the previous drought (Fig. 1, S1 and S2) and higher when it is fully 403 

recovered (Fig. 1, S3) (Mitchell et al. 2016; Schwalm et al. 2017; Peltier & Ogle 2019; Szejner et al. 404 

2020; Hoover et al. 2021). Furthermore, resilience to a subsequent drought is probably decreased by 405 

drought frequency, i.e. the number of consecutive drought events. Several studies in fact support the 406 

notion that a higher drought frequency decreases both resistance (Bose et al. 2020; Xu et al. 2021) and 407 

recovery (Gao et al. 2018; Peltier & Ogle 2019; Szejner et al. 2020; Jiao et al. 2021; Serra‐Maluquer et 408 

al. 2021). However, the opposite, i.e. a higher drought frequency leading to a higher resilience, has 409 

also been shown (Yao et al. 2022) (see also the above section on adaptations shaping the resilience to 410 

a subsequent drought event). Also, increasing drought severity is expected to decrease resistance to 411 

and recovery from a subsequent drought (Fig. 4). This hypothesis is based on studies of single drought 412 

events, where longer duration hampered resistance (Buttlar et al. 2018; Reynaert et al. 2020), and 413 

higher intensity reduced resistance (Xu et al. 2019) and recovery (Schwalm et al. 2017). Given the 414 

broad lack of evidence on the interactive effects of intrinsic and extrinsic factors, experimental and 415 

observational studies are urgently needed to improve our understanding of ecosystem responses to 416 

recurrent drought events. 417 

 418 
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6. Conclusion and Outlook 419 

In times of increasing severity and frequency of drought events in many parts of the world, it is 420 

essential to not only assess the concurrent effects of droughts, but to understand the lasting 421 

consequences such extreme events may have on ecosystems. In our review we have provided a broad 422 

overview of drought legacies and the underpinning mechanisms from species to community and 423 

ecosystem scale. To date, quantitative analyses of drought legacy responses have mainly focused on 424 

aboveground growth-related parameters and some community attributes, suggesting that the legacy 425 

duration can differ vastly for different parameters and different plant functional types. For a more in-426 

depth understanding of drought legacies on ecosystems it will be important for future studies to 427 

extend the observational timescale and explicitly consider a range of interrelated biotic and abiotic 428 

factors, including above-belowground interactions. To advance the field, it will be essential to 429 

illuminate the particular role of adaptation and degradation of properties and processes across scales 430 

in determining ecosystem resilience to subsequent drought events. Furthermore, future studies should 431 

consider potential interactions of drought legacies with other global change factors such as warming, 432 

elevated CO2, N deposition and land-use changes, as well as interactions with other climate extremes, 433 

such as heatwaves and heavy precipitation events. Accounting for these potential interactions and the 434 

implications of drought legacies for subsequent drought events is essential for understanding and 435 

projecting the long-term consequences of a changing climate for ecosystems. 436 

 437 
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Fig.1: Post-drought trajectories of the recovery and post-recovery phase after a drought event. The 1031 

recovery phase is characterized by the rate of recovery (arrow 2) following the maximum impact of the 1032 

drought event (arrow 1). The post-recovery phase starts when the rate of recovery is zero (arrow 3), 1033 

irrespective of whether the recovery has been complete (yellow trajectory) or has resulted in a shifted 1034 

baseline, the latter reflecting an immediate drought legacy (red and blue trajectories). In the post-1035 

recovery phase drought legacies can be characterized by the deviation from the pre-drought baseline 1036 

(arrow 4) and the legacy duration (arrow 5). Starting timepoints (S1-S3) of a potential subsequent 1037 

drought event (see Fig. 5) are indicated as dotted grey arrows. 1038 

 1039 

 1040 

Fig. 2: Drought legacies on species, community and ecosystem scale. Colours refer to autotrophic 1041 

(green), heterotrophic (brown) and abiotic (blue) ecosystem components, respectively. White arrows 1042 

indicate interactions of legacies across properties within a given scale (cross-scale interactions not 1043 

shown for simplicity). See Fig. S1 for the number of papers published on the respective topics. 1044 

Respective key references are indicated as follows, additional references see manuscript: 1. Reichmann et al. 1045 

2013, DeVries et al. 2016, Delgado-Balbuena et al. 2019, Griffin-Nolan et al. 2019, Metz et al. 2020; 2. Bruce et 1046 

al. 2007, Ding et al. 2012, Kinoshita & Seki 2013, Crisp et al. 2016, Darenova et al. 2017, Fleta-Soriano & Munné-1047 

Bosch 2016, Kannenberg et al. 2019b, Kannenberg et al. 2020, Zhao et al. 2020; 3. Kang et al. 2018, Berwaers et 1048 

al. 2019, Peng et al. 2019, Hoover et al. 2021, Zeng et al. 2021; 4. Jactel et al. 2012, Anderegg et al. 2015a, Kolb 1049 

et al. 2016, Schlesinger et al. 2016; 5. Anderegg et al. 2013, Hoover et al. 2014, Frank et al. 2015, Clark et al. 1050 

2016, Xu et al. 2017, DeBoeck et al. 2018, Sippel et al. 2018, Stampfli et al. 2018, Griffin-Nolan et al. 2019, Winkler 1051 

et al. 2019, Batllori et al. 2020, Brodribb et al. 2020, Wilcox et al. 2021; 6.Kaisermann et al. 2017, DeVries et al. 1052 

2018, Meisner et al. 2018, Preece et al. 2019, Valliere et al. 2019, Kelso et al. 2020, Wang & Allison 2021, Liu et 1053 

al. 2022; 7. Lindberg & Bengtsson 2006, Coyle et al. 2017; 8. Saatchi et al. 2013, Kannenberg et al. 2019b, Jiao et 1054 

al. 2021, Senf et al. 2021; 9. Griffin-Nolan et al. 2018, Sala et al. 2012, Petrie et al. 2018, DeVries et al. 2016, Yang 1055 

et al. 2018, DeVries et al. 2019, Wigneron et al. 2020; 10. Stampfli et al. 2018, Kaisermann et al. 2017; 11. DeVries 1056 

et al. 2012, Acosta-Martinez et al. 2014, DeVries et al. 2016, DeVries et al. 2018, Legay et al. 2018, Meisner et al. 1057 

2018, DeLong et al. 2019, Huang et al. 2017, Berwaers et al. 2019, Delgado-Balbuena et al. 2019, Mackie et al. 1058 

2019, Ji et al. 2021, Dong et al. 2021, Hoover et al. 2021, Liu et al. 2022; 12. van der Putten et al. 2013, Preece & 1059 

Peñuelas2016, van der Putten et al. 2016, Kaisermann et al. 2017, Sasse et al. 2018, DeVries et al. 2019, Peguero 1060 

et al. 2019, Pugnaire et al. 2019, Crawford & Hawkes 2020, Sánchez-Cañizares et al. 2017; 13. DeLong et al. 2019, 1061 

Dong et al. 2021, Liu et al. 2022; 14. DeVries et al. 2012, Coyle et al. 2017; 15. Kane et al. 2011, Royer et al. 2011, 1062 

Anderegg et al. 2012, Anderegg et al. 2013; 16. Goebel et al. 2005, Goebel et al. 2011; 17. Robinson et al. 2016, 1063 

Sánchez-García et al. 2019 1064 
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Fig.3:  Drought legacies durations of a) carbon-cycle parameters and b) community properties (species 1067 

abundance, composition, and richness) for different plant functional types and ecosystems, 1068 

respectively. Abbreviations for 3a: Asat = light saturated photosynthetic exchange rate, growth = in 1069 

forest/woody species this refers to radial growth/tree ring width, ANPP = aboveground net primary 1070 

production, GPP = gross primary productivity, AGC = aboveground carbon stocks 1071 

References for Fig. 3a are indicated as follows: 1. Xu et al. 2021, 2. Hahn et al. 2021, 3. Xie et al. 2020, 4. Mackie 1072 

et al. 2019, 5. Stampfli et al. 2018, Hoover et al. 2014, 6. Sala et al. 2012, 7. DeBoeck et al. 2018b, 8. Wigneron et 1073 

al. 2020, 9. Yang et al. 2018, 10. Anderegg et al. 2015b, 11. Wu et al. 2018, 12. Griffin-Nolan et al. 2018, 13. Xu 1074 

et al. 2017, 14. Kannenberg et al. 2019b, 15. Kannenberg et al. 2020, 16. Peltier et al. 2016, 17. Gazol et al. 2020, 1075 

18. Itter et al. 2019, 19. Szejner et al. 2020, 20. Hoover et al. 2021, 21. Gao et al. 2021 1076 

References for Fig. 3b) are indicated as: 1. Hoover et al. 2014, 2. Stampfli et al. 2018, 3. Griffin-Nolan et al. 1077 

2019, 4. Xu et al. 2017, 5. DeBoeck et al. 2018b, 6. Gao et al. 2021, 7. Xu et al. 2021, 8. Kane et al. 2011, 9. 1078 

Suarez & Kitzberger 2008, 10. Anderegg et al. 2012, 11. Stampfli & Zeiter 2004 1079 

 1080 

 1081 

Fig. 4:  Hypothesized changes in ecosystem resilience of an ecosystem property or process (intrinsic 1082 

factor, IF) to a subsequent drought in relation to i) its post-recovery state following the antecedent 1083 

drought event, ii) the adaptation versus degradation of other ecosystem properties and processes (IFs) 1084 

as well as iii) characteristics of the subsequent drought. The colour code of post-recovery state refers 1085 

to Fig. 1, blue and red indicating an increase or decrease in ecosystem state, respectively. Next to the 1086 

post-recovery state, adaptation and degradation of IFs (for a summary of IFs see Fig. 2, for examples 1087 

on adaptations and degradations of IF see Fig. 5) can alter resilience to subsequent drought. Extrinsic 1088 

factors, including timing (S1-S3, see Fig. 1), the severity, and the frequency of the subsequent 1089 

drought(s) can affect resilience (defined here as the combined resistance to and recovery from a 1090 

drought event). 1091 

 1092 

 1093 

Fig. 5: Post-drought adaptation / degradation of selected processes and properties on species, 1094 

community, ecosystem scale (intrinsic factors) associated with higher/lower resilience (i.e. capacity to 1095 

resist and recover) towards a subsequent drought event. An adaptation, e.g. through increases in fine 1096 

root mass, mycorrhizae or water use efficiency (CO2 uptake relative to H2O loss), will lead to higher 1097 

resilience, while a degradation, e.g. of plant cover, species diversity or soil texture, will typically lead 1098 

to a lower resilience. For further explanations see text. 1099 
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